Abstract
Pineapple is one of the tropical fruit commodities produced in Indonesia, one of the pineapple producing areas is Subang Regency, West Java. Currently, pineapples are produced to meet various needs, namely traditional markets, supermarkets, pineapple processing factories, and even souvenirs from Subang Regency. This study aims to classify pineapples that are suitable for sale using the Naïve Bayes method, which is known to be simple and effective in processing probabilistic data. This study uses primary data that includes the physical characteristics of pineapples such as skin color and sweetness level (Brix). The data is processed through several stages, including preprocessing and classification with Naïve Bayes. The results of the study showed a classification accuracy level of 94%, with satisfactory performance on recall and precision. The limitation of this method is the assumption of independence between features, which affects accuracy in certain cases. This study makes a significant contribution to the application of artificial intelligence in the agricultural sector and opens up opportunities for development in other fruit commodities.
Keywords
How to Cite
References
D. Vernanda, N. Nugraha Purnawan, T. Herdiawan Apandi, “ANALISIS DATA UNTUK KLASIFIKASI TINGKAT KEMATANGAN BUAH NANAS MENGGUNAKAN SVM,” Jurnal Ilmiah Ilmu dan Teknologi Rekayasa |, vol. 4, 2022, doi: 10.31962/jiitr.vvii.67.
T. Sandhika Jaya, “KLASIFIKASI NANAS LAYAK JUAL DENGAN METODE NAIVE BAYES CLASSIFIER DAN K-NEAREST NEIGHBOR,” Jurnal Sistem Informasi (E-Journal), vol. 13, no. 1, 2021, [Daring]. Tersedia pada: http://ejournal.unsri.ac.id/index.php/jsi/index
J. Y. Song, Z. S. Qin, C. W. Xue, L. F. Bian, dan C. Yang, “Fruit grading system by reconstructed 3D hyperspectral full-surface images,” Postharvest Biol Technol, vol. 212, hlm. 112898, Jun 2024, doi: 10.1016/J.POSTHARVBIO.2024.112898.
J. Yousaf dkk., “Autonomous smart palm tree harvesting with deep learning-enabled date fruit type and maturity stage classification,” Eng Appl Artif Intell, vol. 139, hlm. 109506, Jan 2025, doi: 10.1016/J.ENGAPPAI.2024.109506.
S. K. Behera, A. K. Rath, dan P. K. Sethy, “Maturity status classification of papaya fruits based on machine learning and transfer learning approach,” Information Processing in Agriculture, vol. 8, no. 2, hlm. 244–250, Jun 2021, doi: 10.1016/j.inpa.2020.05.003.
R. Retnosari, P. Studi, S. Informasi, S. Nusa, dan M. Jakarta, “ANALISIS KELAYAKAN KREDIT USAHA MIKRO BERJALAN PADA PERBANKAN DENGAN METODE NAIVE BAYES,” Jurnal Teknologi Informasi dan Rekayasa Komputer, 2021.
T. Khatun, M. A. S. Nirob, P. Bishshash, M. Akter, dan M. S. Uddin, “A comprehensive dragon fruit image dataset for detecting the maturity and quality grading of dragon fruit,” Data Brief, vol. 52, hlm. 109936, Feb 2024, doi: 10.1016/J.DIB.2023.109936.
I. Loelianto dkk., “IMPLEMENTASI TEORI NAÏVE BAYES DALAM KLASIFIKASI CALON MAHASISWA BARU STMIK KHARISMA MAKASSAR,” SINTECH (Science and Information Technology) Journal, 2020, [Daring]. Tersedia pada: https://doi.org/10.31598
S. N. Salsabila, B. N. Sari, dan R. Mayasari, “KLASIFIKASI ULASAN PENGGUNA APLIKASI DISCORD MENGGUNAKAN METODE INFORMATION GAIN DAN NAÏVE BAYES CLASSIFIER,” INFOTECH journal, 2023, [Daring]. Tersedia pada: https://www.ejournal.unma.ac.id/index.php/infotech/article/view/6277
M. Anjas Aprihartha, Z. Putrawan, D. Zulhan, dan F. A. Nurfaizal, “Klasifikasi Produktivitas Buah Nanas Menggunakan Algoritma Classification and Regression Tree (CART),” Diophantine Journal of Mathematics and Its Applications, 2024, doi: 10.33369/diophantine.v3i1.34193.
M. Rizzo, M. Marcuzzo, A. Zangari, A. Gasparetto, dan A. Albarelli, “Fruit ripeness classification: A survey,” Artificial Intelligence in Agriculture, vol. 7, hlm. 44–57, Mar 2023, doi: 10.1016/J.AIIA.2023.02.004.
S. Palei, S. K. Behera, dan P. K. Sethy, “A Systematic Review of Citrus Disease Perceptions and Fruit Grading Using Machine Vision,” Procedia Comput Sci, vol. 218, hlm. 2504–2519, Jan 2023, doi: 10.1016/J.PROCS.2023.01.225.
D. Wang, X. Wang, Y. Chen, Y. Wu, dan X. Zhang, “Strawberry ripeness classification method in facility environment based on red color ratio of fruit rind,” Comput Electron Agric, vol. 214, hlm. 108313, Nov 2023, doi: 10.1016/J.COMPAG.2023.108313.
I. Ramadan, D. Syauqy, dan R. Primananda, “Sistem Pendeteksi Kematangan Buah Apel menggunakan Metode Naïve Bayes berbasis Embedded System,” 2021. [Daring]. Tersedia pada: http://j-ptiik.ub.ac.id
D. Rahmadani, W. Handoko, F. Sriutami, dan K. U. Br.Siagian, “PENERAPAN METODE NAÏVE BAYES DALAM PENENTUAN GIZI PADA IBU HAMIL DI KELURAHAN BUNGA TANJUNG,” JUTSI (Jurnal Teknologi dan Sistem Informasi), vol. 3, no. 1, hlm. 67–74, Feb 2023, doi: 10.33330/jutsi.v3i1.2064.
W. Yulianti, W. Wiyanto, dan N. Nurhidayanti, “APPLICATION OF DATA MINING USING NAIVE BAYES ALGORITHM FOR CLASSIFICATION OF EMPLOYEE CONTRACT EXTENSION AT PT TORINI JAYA ABADI,” Jurnal Informatika Teknologi …, 2023, [Daring]. Tersedia pada: http://www.jurnal.uts.ac.id/index.php/JINTEKS/article/view/3348
M. Azhari, Z. Situmorang, dan R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, hlm. 640, Apr 2021, doi: 10.30865/mib.v5i2.2937.
M. K. Suryadewiansyah, T. Endra, dan E. Tju, “Jurnal Nasional Teknologi dan Sistem Informasi Naïve Bayes dan Confusion Matrix untuk Efisiensi Analisa Intrusion Detection System Alert”, doi: 10.25077/TEKNOSI.v8i2.2022.081-088.
M. Sadikin, R. Rosnelly, dan T. Surya Gunawan, “Perbandingan Tingkat Akurasi Klasifikasi Penerimaan Dosen Tetap Menggunakan Metode Naive Bayes Classifier dan C4.5,” Jurnal Media Informatika Budidarma, vol. 4, hlm. 1100–1109, 2020, doi: 10.30865/mib.v4i4.2434.
O. Peretz, M. Koren, dan O. Koren, “Naive Bayes classifier – An ensemble procedure for recall and precision enrichment,” Eng Appl Artif Intell, vol. 136, hlm. 108972, Okt 2024, doi: 10.1016/J.ENGAPPAI.2024.108972.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2024 Melek IT : Information Technology Journal