DEVELOPMENT OF A WASTE CLASSIFICATION SYSTEM FOR IMAGE-BASED AUTOMATIC RECYCLING USING A CNN MODEL

Main Article Content

Faqih Rifaldy
M Irsan Prayoga
Lailan Sofinah Harahap

Abstract

One of the most significant environmental issues that needs to be carefully considered is waste, especially when it comes to recycling. The goal of this study is to create an automated waste classification system that uses images to aid the recycling process. Using a large dataset that includes over 30 categories, a Convolutional Neural Network (CNN) model is used to categorize various waste materials, including paper, metal, glass, and plastic. To improve the generalization of the model, the dataset is preprocessed using several methods, including data augmentation. Rotation, flipping, and zoom adjustment are examples of augmentation techniques that generate more data. Visual elements of the waste images are extracted using a straightforward CNN model architecture that includes multiple convolutional and pooling layers. The Adam optimizer is used to train the model for ten epochs with a learning rate of 0.001. The overall accuracy of the model on the test dataset is 66%, according to the evaluation results, with varying precision and recall by category. According to the confusion matrix analysis, the model performs well on the plastic and glass categories, but has difficulty distinguishing between classes that have similar visual characteristics, such as metal and paper. The Histogram of Oriented Gradients (HOG) feature is also used in the Support Vector Machine (SVM) model as a basis. Deep learning-based methods are preferred because the SVM model only achieves 55% accuracy, lower than CNN. Furthermore, a comprehensive assessment is carried out using f1-score analysis and prediction visualization for each class. This research is an initial step towards creating an image processing-based recycling automation system. With the accuracy achieved, this model can be a basis or reference point for further research. In the future, data on underperforming classes will be added, transfer learning models such as EfficientNet will be used, and the model will be integrated with real-time systems for beneficial applications. It is hoped that the findings of this study will provide a basis for improving the effectiveness of waste management and assisting environmental conservation initiatives.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
“DEVELOPMENT OF A WASTE CLASSIFICATION SYSTEM FOR IMAGE-BASED AUTOMATIC RECYCLING USING A CNN MODEL”, MelekIT, vol. 11, no. 1, pp. 11–20, Jul. 2025, doi: 10.30742/melekitjournal.v11i1.397.
Section
Original Research

How to Cite

[1]
“DEVELOPMENT OF A WASTE CLASSIFICATION SYSTEM FOR IMAGE-BASED AUTOMATIC RECYCLING USING A CNN MODEL”, MelekIT, vol. 11, no. 1, pp. 11–20, Jul. 2025, doi: 10.30742/melekitjournal.v11i1.397.

References

F. Husna et al., “Optimalisasi Pengelolaan Sampah Dan Daur Ulang Untuk Mengurangi Emisi Gas Rumah Kaca Di Perkotaan,” vol. 5, no. 1, pp. 9–24, 2025.

A. Ibnul Rasidi, Y. A. H. Pasaribu, A. Ziqri, and F. D. Adhinata, “Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, pp. 72–81, 2022, doi: 10.28932/jutisi.v8i1.4314.

S. R. Suartika E. P, I Wayan, Wijaya Arya Yudhi, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) Pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, p. 76, 2016, [Online]. Available: http://repository.its.ac.id/48842/

W. Weifeng, Z. Baobao, W. Zhiqiang, Z. Fangzhi, and L. Qiang, “Garbage image recognition and classification based on hog feature and SVM-Boosting,” J. Phys. Conf. Ser., vol. 1966, no. 1, 2021, doi: 10.1088/1742-6596/1966/1/012002.

K. D. Linda, K. Kusrini, and A. D. Hartanto, “Studi Literatur Mengenai Klasifikasi Citra Kucing Dengan Menggunakan Deep Learning: Convolutional Neural Network (CNN),” J. Electr. Eng. Comput., vol. 6, no. 1, pp. 129–137, 2024, doi: 10.33650/jeecom.v6i1.7480.

. S. and A. A. Supianto, “Klasifikasi Citra Satelit Menggunakan Kombinasi Fitur Warna Dan Fitur Tekstur,” J. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 2, p. 102, 2015, doi: 10.25126/jtiik.201522141.

Z. A. Arifin and W. D. S. Kurniati, “PENGGUNAAN ANALISA FAKTOR UNTUK KLASIFIKASI CITRA PENGINDERAAN JAUH MULTISPEKTRAL Agus Zainal Arifin dan Wiwik Dyah Septiana Kurniati,” Juti, vol. 1, pp. 12–19, 2022.

V. Yunita et al., “Klasifikasi Citra Menggunakan Metode Minor Component Analysis pada Sistem Temu Kembali Citra,” vol. 15, no. 2, pp. 38–41, 2010.

P. Rosyani, S. Saprudin, and R. Amalia, “Klasifikasi Citra Menggunakan Metode Random Forest dan Sequential Minimal Optimization (SMO),” J. Sist. dan Teknol. Inf., vol. 9, no. 2, p. 132, 2021, doi: 10.26418/justin.v9i2.44120.

P. A. Buyung, “Klasifikasi Citra Landsat Menggunakan Metode Ekstraksi Ciri Gray Level Co-Ocurent Matrix Dan K-Nearest Neighbor,” 2016.

N. Ameliana, N. Suarna, and W. Prihartono, “Analisis Data Mining Pengelompokkan Umkm Menggunakan Algoritma K-Means Clustering Di Provinsi Jawa Barat,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3261–3268, 2024, doi: 10.36040/jati.v8i3.9655.

A. Agung, A. Daniswara, I. Kadek, and D. Nuryana, “Data Preprocessing Pola Pada Penilaian Mahasiswa Program Profesi Guru,” J. Informatics Comput. Sci., vol. 05, pp. 97–100, 2023.

Y. Kasnanda Bintang, H. Imaduddin, Y. Kasnanda, and B. Corresponding Author, “Pengembangan Model Deep Learning Untuk Deteksi Retinopati Diabetik Menggunakan Metode Transfer Learning,” vol. 9, no. 3, pp. 1442–1455, 2024, [Online]. Available: https://doi.org/10.29100/jipi.v9i3.5588

F. Alghifari and D. Juardi, “Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes,” J. Ilm. Inform., vol. 9, no. 02, pp. 75–81, 2021, doi: 10.33884/jif.v9i02.3755.

M. Resa Arif Yudianto, P. Sukmasetya, R. Abul Hasani, and D. Sasongko, “Pengaruh Data Preprocessing terhadap Imbalanced Dataset pada Klasifikasi Citra Sampah menggunakan Algoritma Convolutional Neural Network,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1367–1375, 2022, doi: 10.47065/bits.v4i3.2575.

K. R. Wardani and L. Leonardi, “Klasifikasi Penyakit pada Daun Anggur menggunakan Metode Convolutional Neural Network,” J. Tekno Insentif, vol. 17, no. 2, pp. 112–126, 2023, doi: 10.36787/jti.v17i2.1130.

D. Anggara, N. Suarna, and Y. Arie Wijaya, “Performance Comparison Analysis Of Optimizer Adam, SGD, and RMSPROP on The H5 Model,” J. Ilm. NERO, vol. 8, no. 1, p. 2023, 2023, [Online]. Available: https://www.kaggle.com/datasets/jonathanoheix/face-expression-recognition-dataset

F. D. Rochmawati, “Perkembangan Bahasa Pemrograman Komputer Di Amerika Serikat Tahun 1955-1995,” Skripsi, pp. 1–86, 2022, [Online]. Available: http://digilib.uinkhas.ac.id/17639/1/FItria Dewi Rochmawati.pdf

Vian Armando, “BAB 3 Precision, Recall dan Accuracy,” pp. 9–12, 2017.

R. Nurhidayat and K. E. Dewi, “Penerapan Algoritma K-Nearest Neighbor Dan Fitur Ekstraksi N-Gram Dalam Analisis Sentimen Berbasis Aspek,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 1, pp. 91–100, 2023, doi: 10.34010/komputa.v12i1.9458.