CUSTOMER SEGMENTATION AND BUYER TARGETING USING K-MEANS CLUSTERING: A CASE STUDY OF THE REAL ESTATE INDUSTRY
Main Article Content
Abstract
This study aims to analyze customer segmentation and targeting buyers using the K-Means Clustering method in the real estate industry, with the case study of PT Sembilan Bintang Lestari in Jember. The company faces challenges in understanding the buyer's specific characteristics, so that it requires a data -based approach to increase marketing effectiveness. The analysis process is carried out based on a crisp-DM framework which includes stages of business understanding, data understanding, data preparation, modeling, and evaluation. Customer data used includes age variables, income, jobs, house types, payment methods, and marital status. The modeling stage uses the K-Means algorithm with the help of the Elbow method to determine the optimal number of clusters, as many as three clusters. The segmentation results are then evaluated using the Silhouette Score and visualized through the scatter diagram, boxplot, and pie chart to provide a comprehensive picture of the characteristics of each cluster. This result is used as a basis for designing a more specific and targeted buyer targeting strategy. This study contributes to the application of data mining -based segmentation methods to support marketing decision making more effectively in the real estate sector. The novelty of this study lies in the integration of the K-Means, Elbow, and Silhouette Score methods in real estate customer data for a decade, as well as the presentation of applicative segmentation visualization to support buyers targeting at the company's operational level.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
References
“bank indonesia,” 2024.
A. Sudarso, Konsep E-Bisnis, vol. 01, no. November. 2020.
Y. Yang, “Application of Big Data in Real Estate Marketing,” 2019.
“Company profile PT. Sembilan Bintang Lestari,” 2022.
A. Burhan, H. Kiat, Y. Azhar, and V. Rahmayanti, “Penerapan Metode K-Means Dengan Metode Elbow Untuk Segmentasi Pelanggan Menggunakan Model RFM (Recency, Frequency & Monetary),” REPOSITOR, vol. 2, no. 7, pp. 945–952, 2020.
F. Tjiptono and G. Chandra, Pemasaran Strategik. 2013.
A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. TEKNO KOMPAK, vol. 15, no. 2, pp. 25–36, 2021.
J. Wijaya, H. P. Ipung, and M. A. Soetomo, “DESIGN AN AGILE OF MACHINE LEARNING TO PREDICTIVE HOUSE PRICING AND TARGETING SEGMENTED MARKET,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Sep. 2022. doi: 10.1145/3557738.3557856.
M. S. Cruising, “Data mining in customer segmentation,” no. September, pp. 189–192, 2016.
C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on applying CRISP-DM process model,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 526–534. doi: 10.1016/j.procs.2021.01.199.
F. Barrera, M. Segura, and C. Maroto, “Multiple criteria decision support system for customer segmentation using a sorting outranking method,” Expert Syst. Appl., vol. 238, Mar. 2024, doi: 10.1016/j.eswa.2023.122310.
P. Y. Jadhav and D. D. Parasar, “Customer Segmentation and Buyer Targeting Approach,” Int. J. Recent Technol. Eng., vol. 9, no. 4, pp. 295–303, Nov. 2020, doi: 10.35940/ijrte.D5013.119420.
Erlin Windia Ambarsari, Dedin Fathudin, and Gravita Alfiani, “Utilizing K-Means Clustering to Understanding Audience Interest in SEO-Optimized Media Content,” J. Comput. Informatics Res., vol. 3, no. 2, pp. 208–214, 2024, doi: 10.47065/comforch.v3i2.1207.
I. Herdiana, M. A. Kamal, Triyani, M. N. Estri, and Renny, “A More Precise Elbow Method for Optimum K-means Clustering,” pp. 1–22, 2025, [Online]. Available: http://arxiv.org/abs/2502.00851
R. Huang and S. Mao, “Research on Precision Marketing of Real Estate Market Based on Data Mining,” Sci. Program., vol. 2022, 2022, doi: 10.1155/2022/8198568.
E. A. E. Dawood, E. Elfakhrany, and F. A. Maghraby, “Improve profiling bank customer’s behavior using machine learning,” IEEE Access, vol. 7, pp. 109320–109327, 2019, doi: 10.1109/ACCESS.2019.2934644.
R. Ananda and A. Z. Yamani, “Terakreditasi SINTA Peringkat 2 Penentuan Centroid Awal K-means pada proses Clustering Data Evaluasi Pengajaran Dosen,” masa berlaku mulai, vol. 1, no. 3, pp. 544–550, 2020.
A. Al Fahrozi, F. Insani, E. Budianita, and I. Afrianty, “Implementasi Algoritma K-Means dalam Menentukan Clustering pada Penilaian Kepuasan Pelanggan di Badan Pelatihan Kesehatan Pekanbaru,” Indones. J. Innov. Multidisipliner Res., vol. 1, no. 4, pp. 474–492, 2023, doi: 10.31004/ijim.v1i4.53.
V. Kumar, S. Boriah, and V. Chandola, “Similarity measures for categorical data: A comparative evaluation,” Soc. Ind. Appl. Math. - 8th SIAM Int. Conf. Data Min. 2008, Proc. Appl. Math. 130, vol. 1, no. June, pp. 243–254, 2008, doi: 10.1137/1.9781611972788.22.
P. Dalatu, A. Fitrianto, and A. Mustapha, “Improved normalization and standardization techniques for higher purity in K-means clustering,” Far East J. Math. Sci., vol. 100, pp. 859–871, 2016, doi: 10.17654/MS100060859.
M. D. V. Prasad and S. T, “Clustering Accuracy Improvement Using Modified Min-Max Normalization Technique Min-Max Normalization Technique,” pp. 0–7, 2024, doi: 10.20944/preprints202411.0486.v1.
Y. Dimas Pratama and A. Salam, “Comparison of Data Normalization Techniques on KNN Classification Performance for Pima Indians Diabetes Dataset,” J. Appl. Informatics Comput., vol. 9, no. 3, p. 693, 2025, [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
Y. Yuan, H. Xu, M. Krishnamurthy, and P. Vijayakumar, “Visualization analysis of educational data statistics based on big data mining,” J. Comput. Methods Sci. Eng., vol. 24, no. 3, pp. 1785–1793, 2024, doi: 10.3233/JCM-230003.